On-farm management practices for mitigating toxicity in irrigation run-off

Bryn Phillips and Laura McCalla
University of California Davis – Granite Canyon Lab
Aquatic Toxicity

Aquatic toxicity is the aggregate toxic effect of a sample measured directly by an aquatic toxicity test.

Aquatic toxicity tests measure biological effects (e.g., survival, growth, reproduction, development).

Acute versus Chronic.

fathead minnow

water flea

amphipod crustacean

midge fly larva
Solubility & Persistence of Representative Insecticides

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Log K_{ow}</th>
<th>K_{oc} (mL/g)</th>
<th>Soil Half Life (aerobic)</th>
<th>Water Half Life (photolysis)</th>
<th>Water Half Life (hydrolysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDT</td>
<td>6.0</td>
<td>2,000,000</td>
<td>2 – 15 Years</td>
<td>Weeks – Years</td>
<td>Weeks – Years</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>4.7</td>
<td>6,070</td>
<td>7 – 120 Days</td>
<td>21 – 28 Days</td>
<td>35 – 78 Days</td>
</tr>
<tr>
<td>Bifenthrin</td>
<td>6.0</td>
<td>240,000</td>
<td>3 – 8 Months</td>
<td>9 – 14 Months</td>
<td>Months – Years</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>0.6</td>
<td>132 - 400</td>
<td>104 – 228 Days</td>
<td><3 Hours</td>
<td>33 – 44 Days</td>
</tr>
</tbody>
</table>
Insecticide History

Changing Use of Insecticides

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Organochlorines (e.g., DDT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organophosphates (e.g., Chlorpyrifos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrethroids (e.g., Bifenthrin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenylpyrazoles (e.g., Fipronil)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neonicotinoids (Imidacloprid)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fathead minnow

Water flea

Amphipod crustacean

Midge fly larva
Comparative Toxicity

<table>
<thead>
<tr>
<th>Pesticide 96-Hour LC50 (ng/L)</th>
<th>Chlorpyrifos</th>
<th>Bifenthrin</th>
<th>Fipronil</th>
<th>Imidacloprid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fathead Minnow</td>
<td>122,000</td>
<td>4,850</td>
<td>398,290</td>
<td>?</td>
</tr>
<tr>
<td>Water Flea</td>
<td>54</td>
<td>142</td>
<td>17,700</td>
<td>??</td>
</tr>
<tr>
<td>Amphipod</td>
<td>86</td>
<td>9.3</td>
<td>728</td>
<td>65,430</td>
</tr>
<tr>
<td>Midge Fly Larva</td>
<td>290</td>
<td>69</td>
<td>32.5</td>
<td>2,650</td>
</tr>
</tbody>
</table>
BMP’s for runoff treatment:

- **Sediment-Bound Insecticides:**
 - Retention ponds
 - Vegetated treatment systems
 - Use of Polyacrylamide (PAM) to reduce suspended sediments

- **More Water-Soluble Insecticides:**
 - Apply tailwater to non-cropped areas
 - Vegetated treatment systems
 - Enzyme treatment (e.g., Landguard)
Retention Pond
Polyacrylamide (PAM)
Vegetated Treatment System (Pennywort)
BMP Effectiveness – Ponds

- **Two-Pond Study**

- **Chemistry**
 - Some pyrethroid reductions up to 100% in water
 - Other pesticide reductions 20 - 90%

- **Toxicity**
 - 100% mortality to water fleas
 - 100% amphipod mortality at inlet, 72% mortality at outlet

Hunt et al. 2008
BMP Effectiveness – Integrated Vegetated Ditch

- **Configuration**
 - Sedimentation Basin (100 ft)
 - Vegetated Section (764 ft)
 - Landguard OP-A Treatment (108 ft)

- **Chemistry and Toxicity**
 - Organochlorines reduced >90%, pyrethroids up to 100%, chlorpyrifos up to 60% in water
 - Landguard OP-A enzyme removed diazinon
 - 88% average water flea survival after Landguard OP-A treatment

Anderson et al. 2009, 2011
BMP Effectiveness – Integrated Vegetated Ditch

- Adjustable volume and retention time, pennywort and grass vegetation, Landguard
- Organochlorines reduced up to 100%, some pyrethroids up to 100% in water
- Organophosphate concentrations & toxicity removed

Anderson et al. 2011, Phillips et al. 2012,
BMP Effectiveness – Integrated Vegetated Ditch

- Organophosphate mitigation tested with simulated chlorpyrifos-spiked irrigation
- Two simulated flow rates: 50 gpm and 100 gpm
- Vegetated with native grass (red fescue), and include installations of compost and granulated activated carbon in mesh enclosures
- Chlorpyrifos load reduced by 98% at low flow, 94% at high flow
- GAC in vegetated ditch removed additional 4-8%, depending on flow

Phillips et al. 2017
Vegetated System – Concerns

- Food Safety
 - Mammal presence (pathogen vectors)
 - Vegetation choice & fencing

- Cost & Maintenance
 - Ditch Construction - ~$10,100 (grading, seeding, irrigating, & maintaining)
 - Carbon – New GAC and disposal: $350-550 for two 55-gallon drums
 - Bulk ~$1-2 per pound
 - Mesh filter material: ~$100 per 130 ft roll
Aerial Views
Summary: On-Farm Management

- Retention Pond
 - Polyacrylamide (PAM)

- Integrated vegetative treatment system
 - Sedimentation basin
 - Vegetated ditch

- Polishing step:
 - GAC (or Biochar?)
 - Enzyme treatment