

California State University MONTEREY BAY Extraordinary Opportunity

Satellite Mapping of Crop Water Requirements for Irrigation Management Support

June 11, 2014

Forrest Melton forrest.s.melton@nasa.gov CSU Monterey Bay / NASA ARC-CREST

Partners:

CA Dept. of Water Resources, Western Growers Association, Center for Irrigation Technology / CSU Fresno, USDA ARS / NRCS, Univ. of California Cooperative Extension, USGS, Booth Ranches, Chiquita, Constellation Wines, Del Monte Produce, E & J. Gallo, Farming D, Fresh Express, Pereira Farms, Ryan Palm Farms, Tanimura & Antle

NASA + ET?

Evapotranspiration (ET): water consumed (lost to atmosphere) by combined processes of soil evaporation & plant transpiration

Basal ET (ETcb): ET for well-watered crop on a dry soil surface

Earth Science Missions in

Benefits of Using Ag Weather Information in Irrigation Management

- California Department of Water Resources and UC Berkeley surveyed growers in 1990s
- Growers who utilized weather and ET_o data reported an increase in yields of 8% and a decrease in applied irrigation of 13% (DWR, 1997)

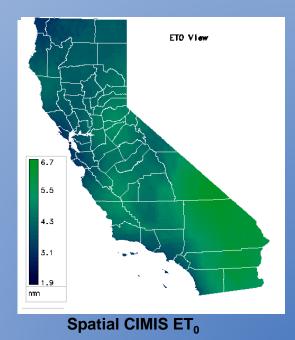
Method Used by Farmers to Decide When to Irrigate, USDA Farm & Ranch Irrig. Survey, 2008

	Percent of	Farmers
Method	CA	US .
Condition of Crop	66%	78%
Feel of soil	45%	43%
Personal calendar schedule	32%	25%
Soil moisture sensing device	14%	9%
Daily ET reports	12%	9%
Scheduled by water delivery org	. 11%	12%
Commercial or government	10%	8%
scheduling service		
When neighbors irrigate	6%	7%
Other	6%	9%
Plant moisture sensing device	3%	5%

Growers may report more than one method, so total of all methods may exceed 100%.

Opportunity

Standard approach for incorporating information on weather / crop stage into irrigation management practices:


California Irrigation Management Information System (CIMIS)

- Operated by CA DWR since 1982
- >140 stations currently providing daily measurements of ETo
- **Spatial CIMIS** data now available for CA; 2km statewide grid, daily
- Crop coefficient mapping identified by CA DWR as high priority need for CIMIS

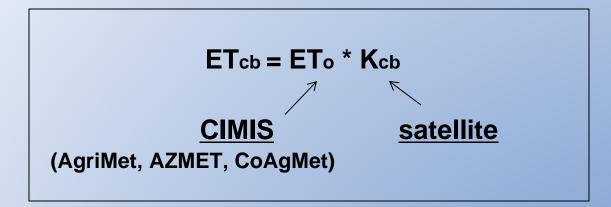
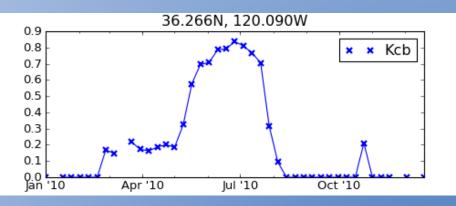


Photo credit: DWR CIMIS

Combining Surface and Satellite Data: Mapping of Crop Water Requirements at Field Scales

Standard Kc Profile (manual)

and Percentages of the Season from Planting to Critical Growth Dates Planting 10%Ca 75%Ca 100% 1.3 75% 1.2 1.1 50% 1.0 20% 0.9 0.8 <u>ې</u> 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Mar-04 Oct-04 Apr-04 May-04 Jun-04 Jul-04 Aug-04 Sep-04 Nov-04 Growth Date


Hypothetical Crop Coefficient (K_c) Curve for Typical Field and Row Crops Showing Growth Stages

Rapid Growth — Mid-Season — Late Seasor

Figure credit: 2005 California Water Plan Update

Initial Stage =

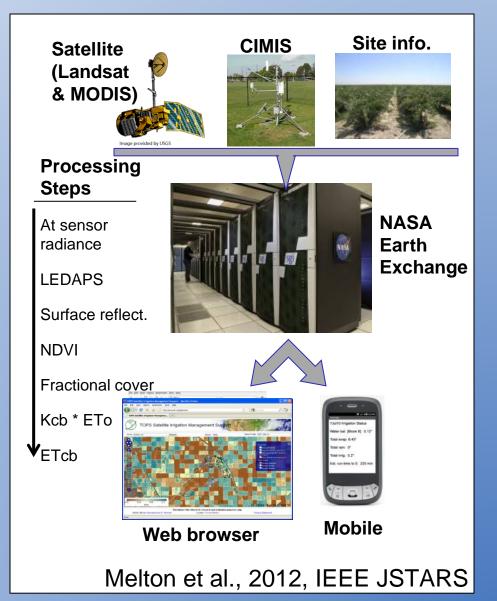
TOPS-SIMS Kcb Profile (Automated, Satellite-derived)

Problem Statement

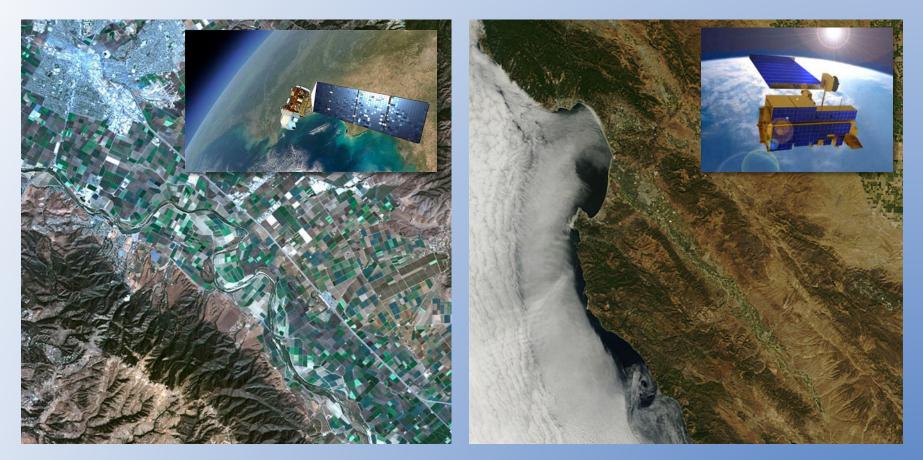
- Increased access to information on crop evapotranspiration can support California growers in improving on-farm water use efficiency
- Information must be:
 - 1. Timely and reliable
 - 2. Specific to individual fields
 - 3. Easy to access
 - 4. Easy to use
 - 5. Accuracy of data must be clearly defined
- Project philosophy:
 - Irrigation management is complex → growers are in the best position to determine their crop water needs, <u>and</u>,
 - Better information leads to better decisions

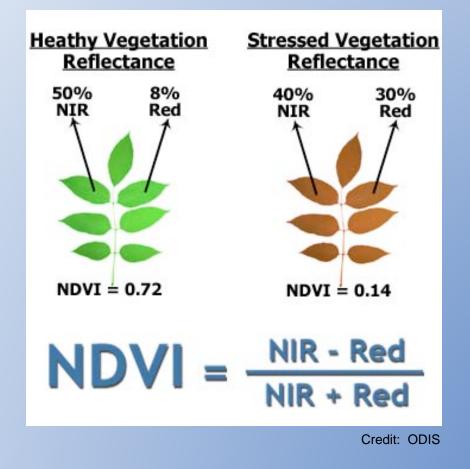
Satellite Irrigation Management Support (SIMS):

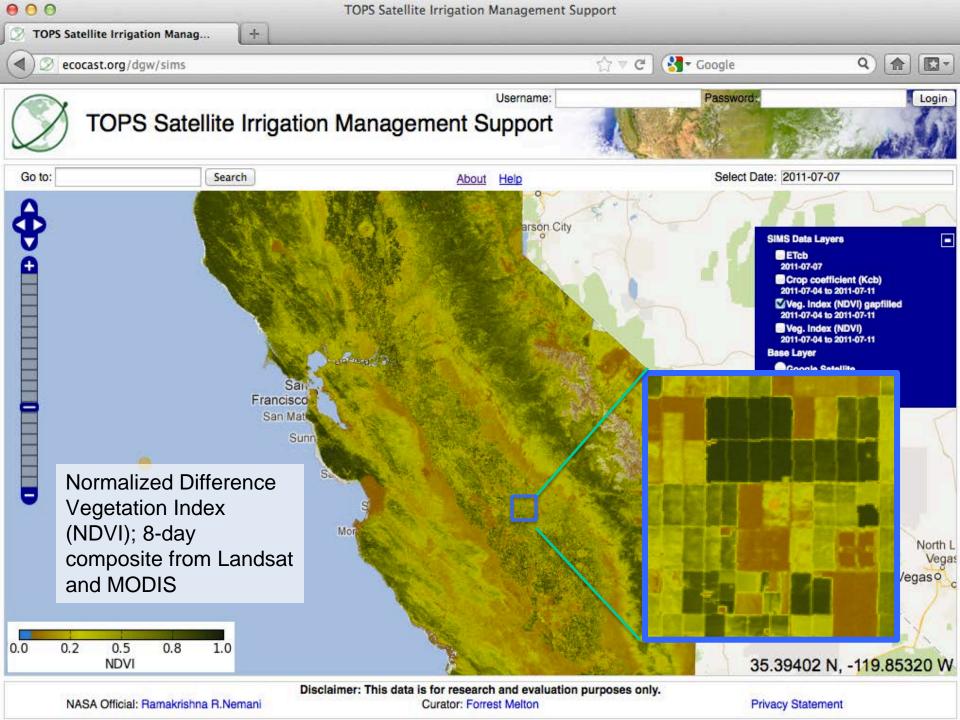
- 1) Develop near real-time estimates of crop water requirements from satellite data to assist growers in managing irrigation, and water managers in improving estimates of agricultural water requirements
- 2) Provide web and mobile data interfaces to increase the ability of the agricultural community to access and use satellite data in irrigation management and crop monitoring



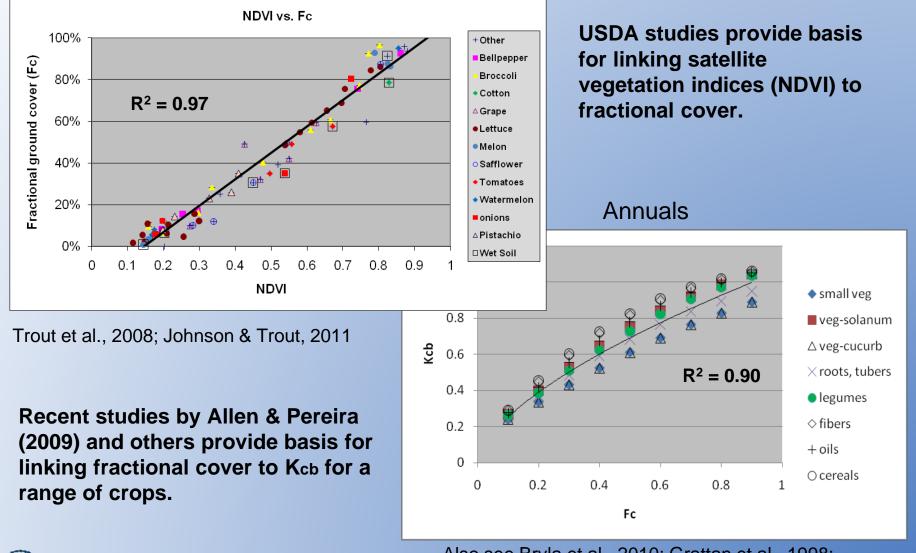
Satellite Irrigation Management Support (SIMS) Framework


- 1. Integration of satellite and surface measurements
- 2. Prototyping accelerated by NASA high end computing resources
- Integration with irrigation management tools (CropManage, VSIM)
- 4. Freely available data
- 5. Outreach and education through partnerships with Western Growers and agricultural extension services


Satellite Data

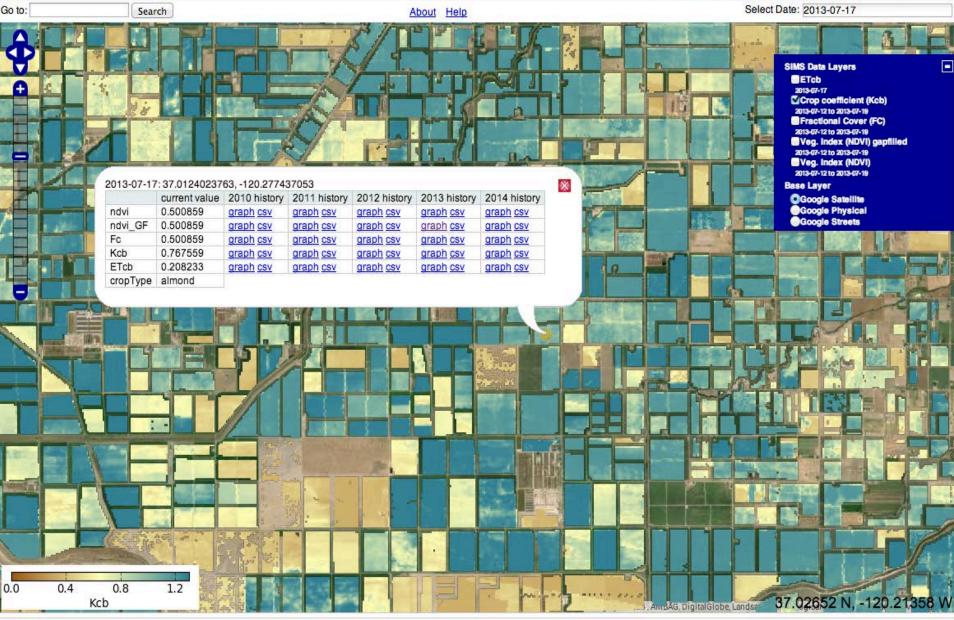

Landsat (TM / ETM+ / OLI) 30m / 0.25 acres Overpass every 8-16 days Terra / Aqua (MODIS) 250m / 15.5 acre Daily overpass

Normalized Difference Vegetation Index



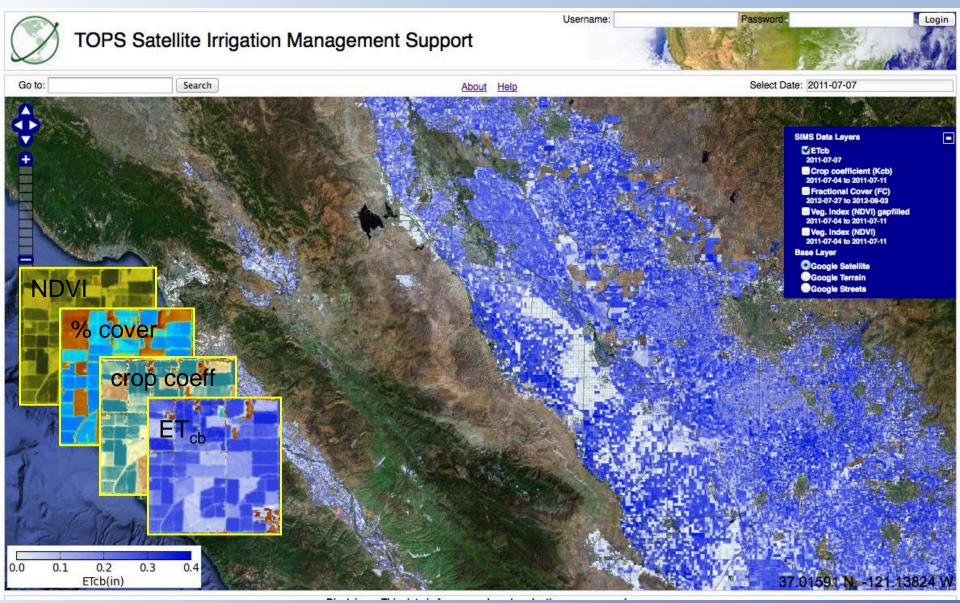
Commonly used remote sensing index of vegetation condition

Approach: Mapping Crop Coefficients and Indicators of Crop Water Requirements from Satellite Data



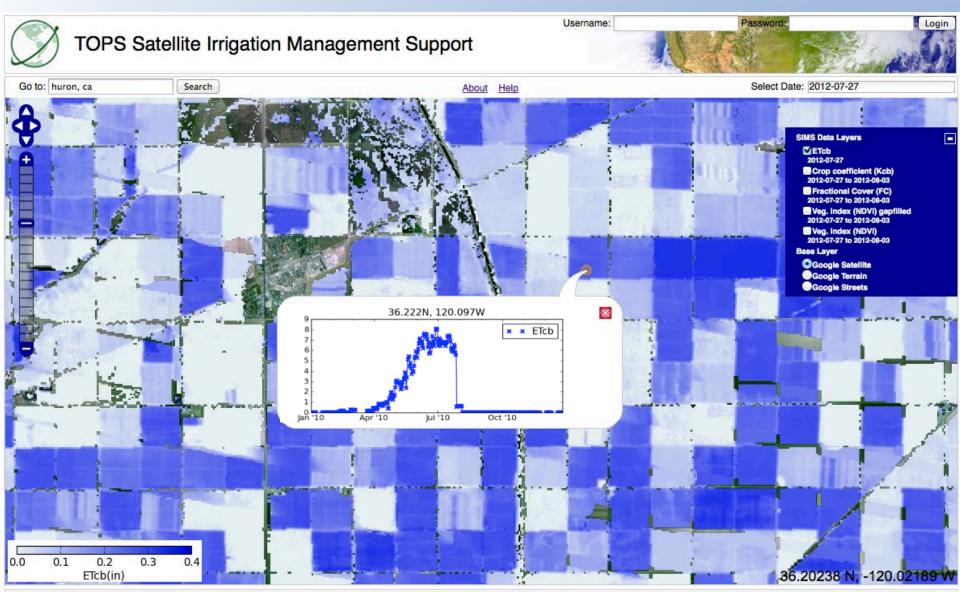
Also see Bryla et al., 2010; Grattan et al., 1998; Hanson & May, 2006; Lopez-Urrea et al., 2009

TOPS Satellite Irrigation Management Support

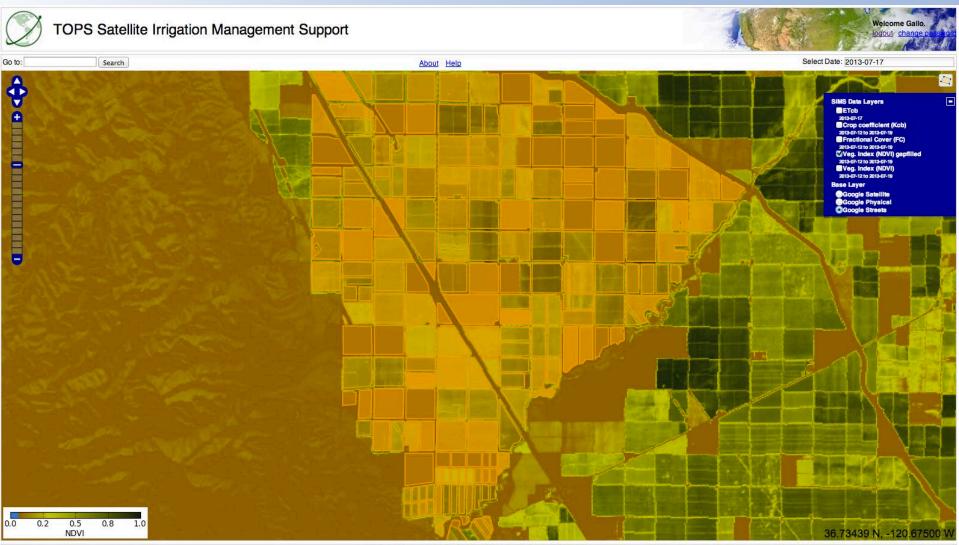

Disclaimer: This data is for research and evaluation purposes only. Curator: Forrest Melton Password:

Login

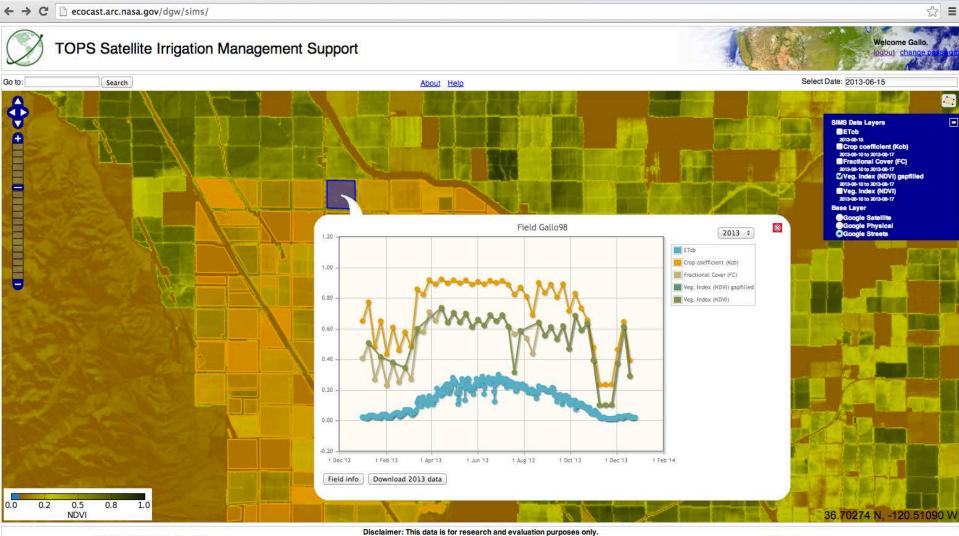
Username:



Satellite Irrigation Management Support (SIMS) Framework

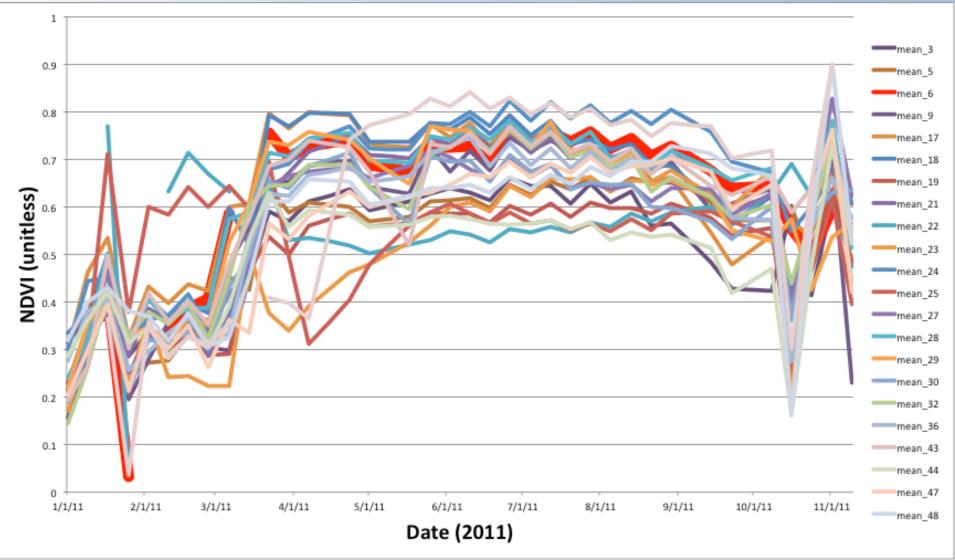


Satellite Irrigation Management Support (SIMS) Framework



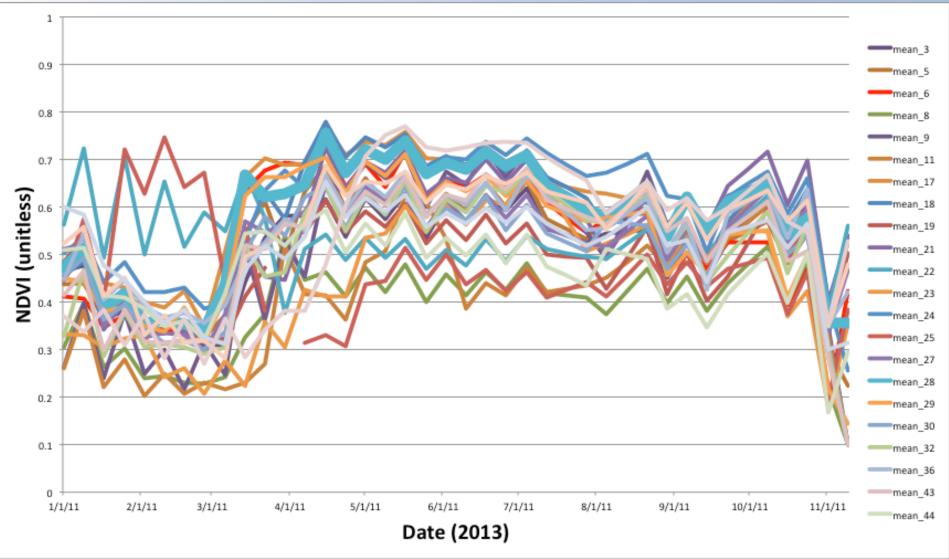
Tracking Conditions Across Fields

Tracking Conditions Across Fields


NASA Official: Ramakrishna R.Nemani

Curator: Forrest Melton

Privacy Statement



Tracking Conditions Across Years

Tracking Conditions Across Years

Delivering Data to the Field: Mobile Interfaces

🛐 🖄 🧐 I	a ? a		11:47 AN
	igation Man		
,	View Field R	eports	
	Browse n	nap	
	Log ou	t	
	SILMISU	NG	

Mobile-based interfaces important for enhancing access to data

Field Validation Strategy

Goal: Calculate daily ET for a wide range of crops and growth forms (graminoids, short forbs, tall forbs, vines, and trees) using two cost-effective and independent approaches at each site.

Approach 1) Water Balance: $ET = P + I - D - \Delta S$

Where ET is evapotranspiration, P is precipitation, I is irrigation, D is drainage below the root zone, and Δ S is change in volumetric water content

Approach 2) Surface Renewal Energy Balance: $ET = R_n - H - G$

Where ET is evapotranspiration, R_n is net radiation, H is sensible heat flux, and G is ground heat flux

Verification and Validation: Sensor Networks

Instrumentation Layout

Other Instruments:

In-line flow meter

SR station

MET station

Point configuration (10):

- P1 10HS 0-4"
- P2 10HS 12-16"
- P3 10HS 24-28"
- P4 MPS-1 14"
- P5 10HS 36-40" / G3 Passive Capillary Lysimeter 44"

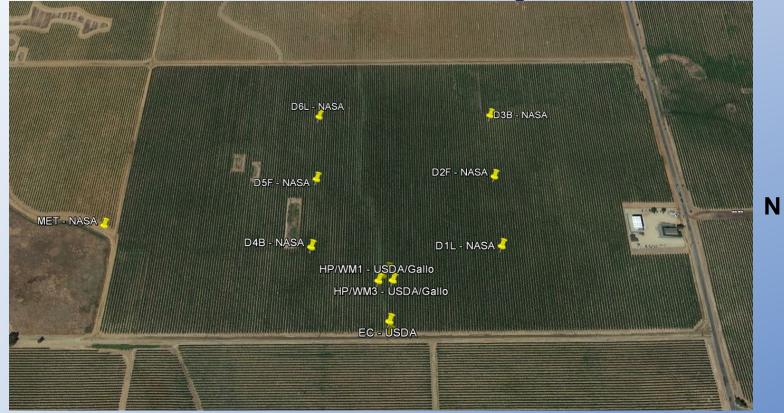
•

۲

•

Site Info:

- Block #4
- Bed Width: 60"
- Furrow: 20"
- Between plants 20"
- Transplant-Double row
- 12" emitter spacing
- South to North flow



S

Instrumentation Layout

Point configuration (8):

- P1 10HS 0-4"
- P2 10HS 16-22"
- P3 10HS 32-36"
- P4 MPS-1 18"

- Other Instruments:
- USDA Eddy Covariance
- MET station
- In-line flow meter

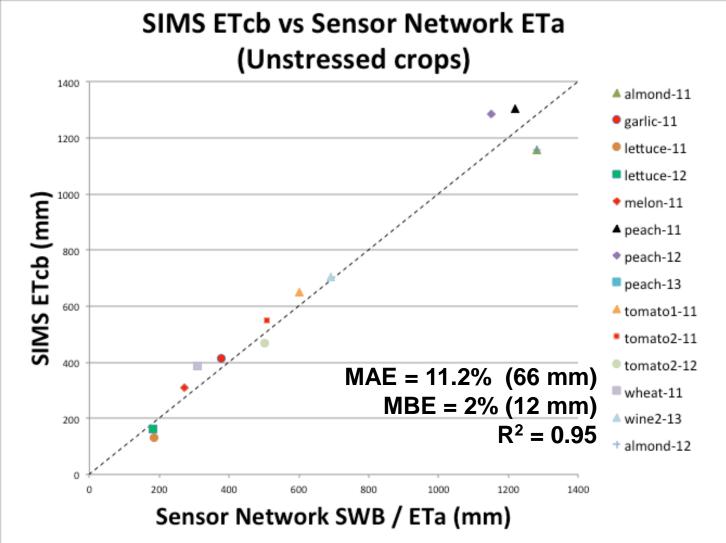
Site Info:

- Row Width: 130"
- Vine spacing: 60"
- Dimensions: Aisle CC12"
- Cover crop: grass
- P5 10HS 48-52" / G3 Passive Capillary Lysimeter

Sensor Network Installations

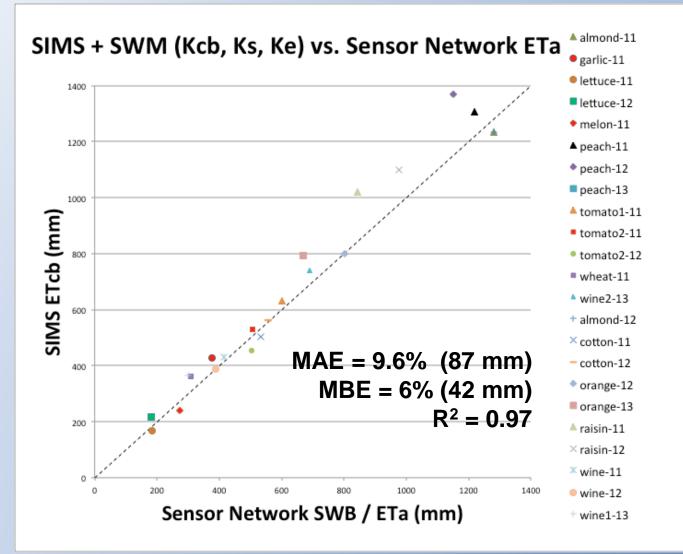
Soogle Earth Pro

Crop Type	Crop	Location
Grain	Corn*	CSU Fresno
Grain	Wheat	San Joaquin Valley
Row	Garlic	San Joaquin Valley
Row	Lettuce*	SJ & Salinas Valley
Row	Broccoli*	Salinas Valley
Row	Cauliflower	San Joaquin Valley
Row	Tomato(2)*	San Joaquin Valley
Row	Cotton (drip)*	San Joaquin Valley
Vine	Melon	San Joaquin Valley
Vine	Wine grapes*	Salinas Valley
Vine	Raisins*	San Joaquin Valley
Tree	Peach*	San Joaquin Valley
Tree	Almond*	San Joaquin Valley
Tree	Orange*	San Joaquin Valley


File Edit ⊻iew Tools Add Help 🖂 🖪 📖 🥥 carmelo, ca San Francisco Google Campus, US San Jose • Tomato Broccoli Oranges Almonds Wine grape Watermelon • California Raisin grape 🕅 🕻 Wheat 🗧 Peach Processing tomatoes. Image USDA Farm Service Agency © 2011 Europa Technologies © 2011 Google Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO Pointer 36°14'18.53" N 121°26'48.08" W elev 775 ft Streaminga []]]]]]]100% Et

*Surface renewal instrumentation.

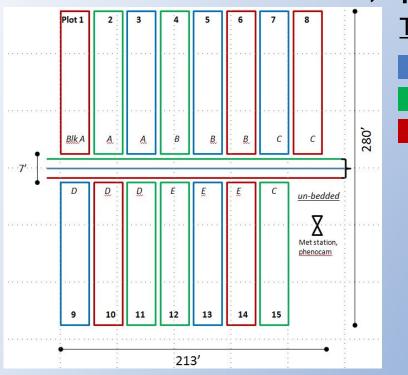
Chris Lund, Kirk Post NASA ARC/CSUMB


NASA

Verification and Validation: Results to date

Comparison of seasonal ET totals from SIMS and the sensor network for sites instrumented in 2011-2013, excluding intentionally stressed crops (wine grapes, raisins, cotton, oranges).

Verification and Validation: Results to date



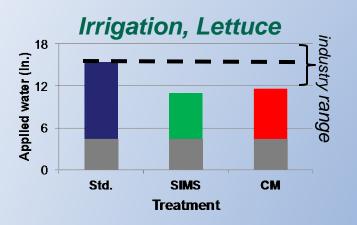
Comparison of seasonal ET totals from SIMS and the sensor network for sites instrumented in 2011-2013. Ke and Ks coefficient via a soil water balance model based on FAO-56 (Allen et al., 1998).

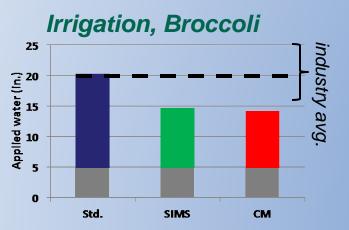
Yield Trials

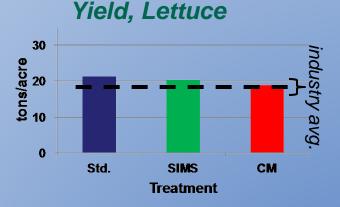
Lettuce & Broccoli USDA ARS, Spence Road, Salinas

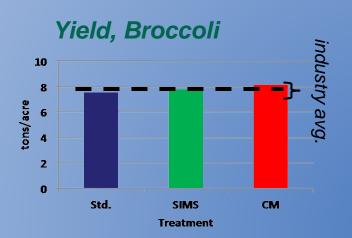
- 3 tmts, 5 reps, block randomized design
- Total area: ~1.4ac (0.57 ha)
- Two years of data: 2012 & 2013

PI: Lee Johnson; Co-I: Michael Cahn Collaboration with UCCE, USDA ARS, Fresh Express, Tanimura & Antle






Yield Trials: Results to Date


 Results to date confirm savings in applied water of 22-33% without reductions in yield or quality

Next Steps

- Yield vs irrigation trials at demonstration sites with interested growers → results for lettuce and broccoli encouraging
- 2. Completion of API for integration with CropManage, Vineyard Soil Irrigation Model (VSIM), and other irrigation scheduling tools
- 3. Development of additional data interfaces
 - CSV/Excel?
 - Field summaries for mobile devices (key stats and satellite imagery)?
 - Are crop coefficients and ET enough, or are irrigation system run times required?

API for Integration with Other Web-based Tools

	Planting	Home Rand	h Home 🔋 Edit Ran	ch Ranch List	Site Administra	tion -	Helj	P	
	Plantin	g: romaine 2, 10	ich 3, Lot 2, sandy lo 0 acres) Inch bed, 6/4-8/10/1						
Concert Street of the									
	tion Sun	nmary			Reset Column C	rder	Show Previ	ious Columns Sho	w Next Column
		Recommended Irrigation Interval (days)	Recommended Irrigation Amount (inches)	Recommended Irrigation Time (hours)	Reset Column C Irrigation Water Applied (inches)	rder Ke	Show Previ Canopy Cover (%)	ous Columns Sho Average Reference ET (inches/day)	w Next Column Total Crop ET (inches)
Show / Nater Date	Hide Columns	Recommended Irrigation Interval	Irrigation Amount	Irrigation Time	Irrigation Water		Canopy Cover	Average Reference ET	Total Croj ET
Show / Nater	Hide Columns Irrigation Method Germination	Recommended Irrigation Interval (days)	Irrigation Amount (inches)	Irrigation Time (hours)	Irrigation Water Applied (inches)	Кс 0.00	Canopy Cover (%) 0	Average Reference ET (inches/day)	Total Crop ET (inches)

New Watering View Rainfall Data

6/9/13

Totals

6/12/13 Sprinkler 6/16/13 Sprinkler

Germination 1.7 Sprinkler

3.1

2.9

0.39 in

0.28 in

0.40 in

1.64 in

First Previous 11 Next Last

0.45 in

0.38 in

0.45 in

2.70 in

0.70 0

0.48 1

0.37 1

0.18

0.15

0.20

1.29 hrs

0.95 hrs

1.33 hrs

5.47 hrs

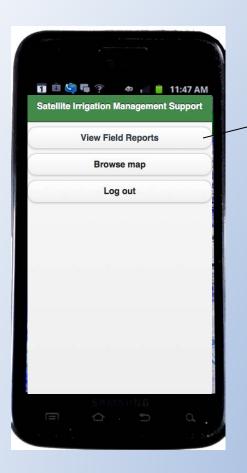
Show All 💌 Rows

0.25

0.21

0.30

1.13 in



Automated Daily Summaries for Individual Fields/Lots/Blocks/Ranches

Mean Evapotrar	nspiration							
	Block Name							
Date	001-01	001-02	001-03	001-04	001-05	001-06	001-07	001-08
2014-01-01-00	0.012044	0.00799	0.014516	0.017353	0.017395	0.010055	0.013572	0.013572
2014-01-02-00	0.01126	0.007469	0.013571	0.016223	0.016262	0.009401	0.012688	0.012688
2014-01-03-00	0.011418	0.007574	0.013761	0.016451	0.01649	0.009532	0.012866	0.012866
2014-01-04-00	0.010703	0.0071	0.0129	0.015421	0.015457	0.008936	0.012061	0.012061
2014-01-05-00	0.013896	0.009218	0.016748	0.020021	0.020069	0.011601	0.015659	0.015659
2014-01-06-00	0.011302	0.007497	0.013621	0.016283	0.016322	0.009436	0.012735	0.012735
2014-01-07-00	0.010154	0.006736	0.012238	0.014629	0.014664	0.008477	0.011442	0.011442
2014-01-08-00	0.012152	0.008061	0.014646	0.017508	0.01755	0.010145	0.013693	0.013693
2014-01-09-00	0.013172	0.012813	0.008339	0.024133	0.015088	0.01341	0.010982	0.016723
2014-01-10-00	0.017201	0.016732	0.010889	0.031515	0.019703	0.017511	0.014342	0.021839
2014-01-11-00	0.011829	0.011506	0.007488	0.021673	0.01355	0.012042	0.009863	0.015018
2014-01-12-00	0.01158	0.011264	0.007331	0.021217	0.013265	0.011789	0.009655	0.014702
2014-01-13-00	0.01193	0.011605	0.007553	0.021858	0.013666	0.012146	0.009947	0.015147
2014-01-14-00	0.012204	0.011872	0.007726	0.022361	0.01398	0.012425	0.010176	0.015495
2014-01-15-00	0.014323	0.013933	0.009068	0.026243	0.016407	0.014582	0.011942	0.018185
2014-01-16-00	0.014937	0.01453	0.009456	0.027368	0.017111	0.015207	0.012454	0.018965
2014-01-17-00	0.019621	0.012992	0.013451	0.029915	0.017275	0.017275	0.02506	0.02346
2014-01-18-00	0.019687	0.013036	0.013496	0.030015	0.017333	0.017333	0.025144	0.023538
2014-01-19-00	0.019485	0.012902	0.013358	0.029708	0.017155	0.017155	0.024886	0.023297
2014-01-20-00	0.019709	0.013051	0.013512	0.030049	0.017352	0.017352	0.025173	0.023565

Mobile Interface for Irrigators?

	Field Ryan Palm, Peach
ETcb	2013-12-26: 0.022316
Crop coefficient (Kcb)	2013-12-19: 0.508576
Veg. Index (NDVI)	2013-12-19: 0.413906
Veq. Index (NDVI) gapfille	2013-12-19: 0.413906
Fractional Cover (FC)	2013-12-19: 0.423514
Back to my fields	

- Add summary by date range
- Add latest satellite image for field
- Convert ET to runtimes?

Questions

- 1) What tools are growers currently using to schedule irrigation?
- 2) With training support, is there capacity to move beyond hard copy irrigation schedules?
- 3) Is ET sufficient, or are irrigation run-times required?
- 4) Is it better to target tools toward irrigators or irrigation consultants and growers?
- 5) Are new tools needed, or is integration with existing or emerging tools a better strategy?
- 6) Other advice or recommendations?

Project Team

Forrest Melton, Lee Johnson, Kirk Post, Alberto Guzman, Carolyn Rosevelt, Gwen Miller, Aimee Teaby, Andrew Michaelis, Petr Votava, Rama Nemani CSU Monterey Bay / NASA ARC-CREST

Kent Frame, Bekele Temesgen, CA Dept. of Water Resources

Partners:

CA Dept. of Water Resources, Western Growers Association, Center for Irrigation Technology / CSU Fresno, USDA ARS / NRCS, Univ. of California Cooperative Extension, USGS, Booth Ranches, Chiquita, Constellation Wines, Del Monte Produce, E & J. Gallo, Farming D, Fresh Express, Pereira Farms, Ryan Palm Farms, Tanimura & Antle

Interagency and public-private partnerships are critical to addressing major water management challenges in California.

Thank you

forrest.s.melton@nasa.gov