Soil Web Survey

- Define an AOI
- Retrieve soil information
 - Texture, EC, AWHC
- Generate a soil report

CIMIS

- Different uses for ET_o values
 - Irrigation scheduling
 - Water budget
- CIMIS-based resources
 - WaterRight
 - Water Destination Graph

Water Destination Graph

NRCS Irrigation Visualizer

Web Soil Survey - Home

websoilsurvey.nrcs.usda.gov/ ▼ Natural Resc

Web Soil Survey (WSS) provides soil data and info
Cooperative Soil Survey. It is operated by the USD

You've visited this page many times. Last visit: 3/1

CIMIS - State of California

www.cimis.water.ca.gov/ ▼ California Depar A description for this result is not available becau more.

You've visited this page many times. Last visit: 4

Wateright Irrigation Scheduling www.wateright.org/ ▼

About the Site. The WATERIGHT site was develope Technology at California State University, Fresno wit

Soil Web Survey

Define an AOI

Step 2

Define an AOI

Step 3

Type in address & click view

AOI marker

Define an AOI

Step 5

Edge of AOI boundary;

Single click sets point; double click closes polygon

Define an AOI

Tabs now active

Step 6

Once AOI is set, NRCS server loads data for area.

- Retrieve soil information
 - Texture, EC, AWHC

Variety of tabs now available; Note single tier

Step 1

- Retrieve soil information
 - Texture, EC, AWHC

Note that a second tier is available

Step 2

- Retrieve soil information
 - Texture, EC, AWHC

We've switched to a new tab in the second tier; nothing has changed in the first tier

Information classes and menu expand/collapse

- Retrieve soil information
 - Texture, EC, AWHC

Step 4

- Retrieve soil information
 - Texture, EC, AWHC

Step 5

Processing request; note Greyed-out background

- Retrieve soil information
 - Texture, EC, AWHC

Step 6

Tells server what data set to queue

Can personalize it a bit

Generate a soil report

Step 1

Can add more

personalized

information

• Generate a soil report

<u>Step 2 +</u>

pdf is being generated

Generating custom soil resource report...

Here it is!

USDA United States Department of Agriculture NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Ventura Area, California

WSARE Demo Report

Soil Web Survey

CIMIS

Dispersed, so easy for growers to question relevance...

Zone	Jan	Feb	Mar	1
1	0.93	1.40	2.48	3
2	1.24	1.68	3.10	3
3	1.86	2.24	3.72	4
4	1.86	2.24	3.41	4
5	0.93	1.68	2.79	4
6	1,86	2.24	3.41	4
7	0.62	1.40	2.48	3
8	1.24	1.68	3.41	4
9	2.17	2.80	4.03	5
10	0.93	1.68	3.10	4
11	1.55	2.24	3.10	4
12	1.24	1.96	3.41	5
13	1.24	1.96	3.10	4
14	1.55	2.24	3.72	5
15	1.24	2.24	3.72	5
16	1.55	2.52	4.03	5
17	1.86	2.80	4.65	6
18	2.48	3.36	5.27	6

Variability between stations zone 1 and during winter me ETo between estimation sit

Geographic zones...
doesn't address
microclimates,
transitional areas...

On-site instruments ideal but do the growers know how to use the data?

Soil Web Survey

CIMIS - GROUND TRUTH! Approach isn't simple or foolproof....

- Different uses for ET_o and system variability makes it complicated and tough to dial in....
 - Irrigation scheduling = sensitive to emission deviations and crop coefficients
 - Water budget = sensitive to placement and wetted area values
 - So to help mitigate disaster...take it Slooow and Ground Truth!

Soil sensors measure how "thirsty" soil is - this correlates with plant water stress.

Sensors above & below the root zone help monitor soil moisture & limit plant water stress and leaching.

CIMIS

- CIMIS-based resources
 - WaterRight

CIMIS

- CIMIS-based resources
 - WaterRight

Need to populate, some are self generated

Agricultural Irrigation Scheduling
 Field Data Summary

Schedule this Field

Back to Field List

Save this Field

Instructions (detailed):

- 1. Enter a Field Name.
- Click the 'Choose Station' button to select a weather station. (You MUST do this first if using the AgriMet system!)
- Choose a Scheduling Basis and enter the Criteria.
- 4. Click the 'Choose Crop' button to choose a Crop
- Select the soil type from the drop-down list.
- Select the irrigation systemfrom the drop-down list and then click the 'System parameters' button.
- 7. Then click one of the action buttons above.

Output!

Soil Web Survey CIMIS

Water Destination Graph

NRCS Irrigation Schedule Visualizer

Irrigation scheduling is based on concrete principles but just talking about those principles makes them abstract.

WDG may help put things into relative perspective....

ALL CREDIT TO MARK BARNETT ET AL. & NRCS

RESOURCE CONSERVATION DISTRICT Ventura County

NRCS Irrigation Schedule Visualizer

"In Your Dreams" scenario...

ET = applied water & perfect DU

All curves are now lined up; water budget is balanced

0.36

Water Destination Diagram

0.36

NRCS Irrigation Schedule Visualizer

NOTE: There's been no "water" or "management" change; crop is now being under-irrigated

... shows as deeper water loss

NRCS Irrigation Schedule Visualizer

What about a return to 0.05 ET but an increase in applied water?

Depth of water loss is shallow...

... applied water depth is deeper.

RESOURCE CONSERVATION DISTRICT Ventura County

NRCS Irrigation Schedule Visualizer

What about a return to 0.05 ET and 4 hour set, but a poor DU?

All low quarter trees under-irrigated

Only half of entire population getting adequate irrigation.

NRCS Irrigation Schedule Visualizer

No worries...

- Correct the DU
- Adjust the set time ...and...
- GROUND TRUTH!

"Real-world" water use, in balance with a minimal amount of leaching.

