SOP 22: Evaluation of design and operation of a micro-irrigation system for potted plants

Updated 7/28/14

Estimated completion time: 8 hours

Materials and equipment needed:

1. Data sheet
2. Clipboard
3. Sharpie pen
4. Flags
5. Calibrated pressure gauge with Schrader valve adapter
6. Flow meter with adapters
7. 300 ft Measuring tape
8. Calipers
9. Tape measure (measure diameter of pipe, distance between pots, etc)
10. 10 Schrader valves with adapters for polyethylene hose.
11. 5 Flush valves with adapters for drip tape and drip hose (number each flush valve for reference to location in field)
12. Teflon tape
13. Small adjustable open ended wrench (crescent)
14. Hand held EC and pH meter

Procedures:

A. Characterize soil and irrigation water:
 1. Determine soil type and texture from NRCS on-line soil map or laboratory report.
 2. Determine source of irrigation water (surface, ground, recycled, blend)
 3. Determine water chemistry from water suitability analysis report

B. Describe crop and field dimensions (sketch map of field and irrigation system):
 1. Determine crop
 4. Measure longest and shortest row of irrigation block.
 5. Determine width of the irrigation block
 6. Determine area of irrigation block
 7. Estimate slope (percent change in elevation per 100 ft)
 8. Determine number of rows of pots
 9. Determine in row spacing of pots
 10. Determine the number of pots per area
 11. Map block to be evaluated and location of measurements

C. Describe irrigation system design (sketch map of field and irrigation system):
 1. Determine number of drip emitters per pot
 2. Determine lateral (polyethylene hose) diameter and wall thickness
 3. Determine number of row of pots per lateral line (e.g., 1 line per 4 rows of pots)
 4. Determine manufactures discharge rate for drip emitter (gph)
5. Determine the length and diameter of polyethylene leads that connect drip emitter to lateral line
6. Determine if flush valves are present
7. Determine diameter of submains
8. Count number of submains in field
9. Determine length of submain (from connection with main to end of submain)
10. Count number of lateral lines per submain line
11. Determine main line diameter
12. Determine type of filter present
13. Determine where and if backflow prevention device is present
14. Determine where air/vacuum release is present
15. Determine if low pressure drain is present near water source
16. Determine if low pressure drain is present near lowest point in drip system
17. Determine locations where pressure can be monitored by operator
18. Determine if pressure regulators are present at main/submain connections and if functional

D. Before starting irrigation system:
1. Install flow meter on main or submain, record the initial gallons, and determine area irrigated after flow meter
2. Install Schrader valves before and after filter if possible
3. Install Schrader valves at 3 locations on submain (near mainline connection, middle, and end of submain)
4. Install Schrader valves at 10 locations at end of lateral lines
5. Install 5 flush valves at end of lateral lines
6. Map locations of all valves with a number reference for each valve.
7. Determine the distance of valves from reference point (main/submain connection, bed number, and distance from submain)

E. At start of irrigation:
1. Record start time of irrigation
2. After starting irrigation system, make the following readings 2 times during the irrigation:
 a. Flow rate (gpm) on flow meter
 b. Pressures at all locations with Schrader valves (note time and valve number)

F. During the irrigation (at least 30 minutes after pressurizing system):
1. Count number of significant leaks per submain (big wet spots, standing water in furrows)
2. Count number of leaks per length of lateral line (drip tape or hose) on 10 or more laterals
3. Collect water from flush valves and determine if materials is collecting at end of lateral lines
4. Measure electrical conductivity and pH of irrigation water

G. After irrigation ends:
1. Record end time of irrigation
2. Record ending flow meter reading
3. Remove Schrader valves, flush valves, and flow meter, and reassemble drip system.

H. Reporting:
1. Enter data into “micro-irrigation system pots data entry” spreadsheet
Comments:
1. Distribution uniformity can also be evaluated during the irrigation. Refer to SOP 16: “determining distribution uniformity of micro-irrigation systems for potted plants.”
<table>
<thead>
<tr>
<th>Description of drip system</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Drip lines per bed</td>
<td></td>
</tr>
<tr>
<td>Tape discharge rate (gpm/100 ft)</td>
<td></td>
</tr>
<tr>
<td>Drip tape diameter (inches)</td>
<td></td>
</tr>
<tr>
<td>Drip tap wall thickness (mil)</td>
<td></td>
</tr>
<tr>
<td>Emitter spacing (inches)</td>
<td></td>
</tr>
<tr>
<td>Lead diameter (inches)</td>
<td></td>
</tr>
<tr>
<td>Lead length (inches)</td>
<td></td>
</tr>
<tr>
<td>Number of driplines per lead</td>
<td></td>
</tr>
<tr>
<td>flush valves (present/absent)</td>
<td></td>
</tr>
<tr>
<td>Submain diameter (inches)</td>
<td></td>
</tr>
<tr>
<td>Submain length (feet)</td>
<td></td>
</tr>
<tr>
<td>Main diameter (inches)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Backflow prevention (check all that apply)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Not present</td>
<td></td>
</tr>
<tr>
<td>Check valve</td>
<td></td>
</tr>
<tr>
<td>Low pressure drain</td>
<td></td>
</tr>
<tr>
<td>Vacuum release</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air/Vacuum release</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Not present</td>
<td></td>
</tr>
<tr>
<td>Number of locations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure check (check all that apply)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Not present</td>
<td></td>
</tr>
<tr>
<td>Number of locations</td>
<td></td>
</tr>
<tr>
<td>Before filter</td>
<td></td>
</tr>
<tr>
<td>After filter</td>
<td></td>
</tr>
<tr>
<td>Submain</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
Grower ___________________________ Date ___________
Ranch ___________________________ Block ___________

pressure regulators at submains (check all that apply)
- not present
- gate valve (not a regulator)
- not adjustable
- adjustable
- Adjustable regulating valve
diameter (inches)

Filtration (check all that apply)
- not present
- disk
- sand media
- screen
- automatic back flush

filtering capacity (manufacturer’s specifications)
- max flow rate (gal per minute)
- filtering mesh

Drain down at low end of block (check all that apply)
- low pressure drain
- flush valves
- other

soil properties (from NRCS online soil map)
- Texture
- % clay
- % sand
- % silt
- soil saturated paste SAR
- soil saturated paste EC (ds/m)

water properties (from report unless specified differently)
- field measured pH
- field measured EC (ds/m)
- pH
- EC (ds/m)
- SAR
- bicarbonate (meq/L)
- Iron (ppm)
- Manganese (ppm)
- Boron (ppm)
- Chloride (meq/L)
- Magnesium (meq/L)
- Calcium (meq/L)
- Sodium (meq/L)
<table>
<thead>
<tr>
<th>Grower</th>
<th>Ranch</th>
<th>Date</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

leaks on drip system

- # of leaks along submain 1
- # of leaks along submain 2
- # of leaks along submain 3

- # of leaks on lateral line 1
- # of leaks on lateral line 2
- # of leaks on lateral line 3
- # of leaks on lateral line 4
- # of leaks on lateral line 5
- # of leaks on lateral line 6
- # of leaks on lateral line 7
- # of leaks on lateral line 8
- # of leaks on lateral line 9
- # of leaks on lateral line 10

- % of furrows with significant amounts of ponded water

flush valve water

- material present in valve 1
- material present in valve 2
- material present in valve 3
- material present in valve 4
- material present in valve 5

flow meter

- initial flow meter reading (gallons)
- start time
- end flow meter reading (gallons)
- end time
<table>
<thead>
<tr>
<th>Location 1</th>
<th>Location 2</th>
<th>Location 3</th>
<th>Location 4</th>
<th>Location 5</th>
<th>Location 6</th>
<th>Location 7</th>
<th>Location 8</th>
<th>Location 9</th>
<th>Location 10</th>
<th>Location 11</th>
<th>Location 12</th>
<th>Location 13</th>
<th>Location 14</th>
<th>Location 15</th>
<th>Location 16</th>
<th>Location 17</th>
<th>Location 18</th>
<th>Location 19</th>
<th>Location 20</th>
<th>Location 21</th>
<th>Location 22</th>
<th>Location 23</th>
<th>Location 24</th>
<th>Location 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 1</td>
<td>Time 2</td>
<td>Time 3</td>
<td>Time 4</td>
<td></td>
</tr>
</tbody>
</table>